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The existence of fast dynamos caused by steady motion of an electrically conducting 
fluid is established by consideration of a two-dimensional spatially periodic flow : the 
velocity, which is independent of the vertical coordinate 2 ,  is finite and continuous 
everywhere but the vorticity is infinite at the X-type stagnation points. A mean-field 
model is developed using boundary-layer methods valid in the limit of large magnetic 
Reynolds number R. The magnetic field is confined to sheets, width of order R-4. The 
mean magnetic field lies and is uniform on horizontal planes: its direction is 
independent of time but rotates once about the vertical axis over a short distance 
2x1, where 1-’ = &b and p is a vertical stretched wavenumber independent of R. Its 
alternating direction gives it a rope-like structure within the sheets. An a-effect is 
calculated for the model, whose strength for a given flow is a function of /? and R. 
Two sources of a-effect are isolated whose relative importance depends critically on 
the size of /3. When the vorticity is finite everywhere and p 4 1, the dynamo is 
‘almost’ fast with growth rates of order (lnR)-l. The maximum growth rate 
In (lnR)/ln R occurs when, correct to leading order, /3 is (lnR)-f. The asymptotic 
results valid for large R compare excellently with Roberts (1972) modal analysis for 
finite R. 

1. Introduction 
The kinematic dynamo problem is concerned with the magnetic field b(x,t), 

induced by the motion of an electrically conducting fluid moving with velocity ~ ( x ,  t ) ,  
in the absence of any external electric current sources. In dimensionless form b 
satisfies the magnetic induction equation 

( 1 . 1 ~ ’  b)  

where R is the magnetic Reynolds number. For steady flows ~ ( x ) ,  solutions of (1 .l) 
can be sought in the form b = Re ( 4 x 1  ept}. When appropriate boundary conditions 
are applied as 1x1 + co, (1 . l )  reduces to an eigenvalue problem for the growth rate 
p. The dynamo is said to be ‘fast’ if p+po( > 0) and slow if p J . 0  as R t  co. The 
existence of fast dynamos produced by steady motion is a controversial matter (e.g. 
see Zel’dovich, Ruzmaikin & Sokolov 1983; Moffatt & Proctor 1985; Soward & 
Childress 1986)’ which this paper partially resolves by consideration of an explicit 
dynamo model discussed previously by Childress (1979) in the large-R limit. 

The existence of slow dynamos is well established and there are many known 
examples. One such example is Braginsky’s (1964) nearly axially symmetric model 
of the geodynamo. Its main features are that the flow is dominated by large azimuthal 
velocities and that the field evolves on the slow magnetic diffusion timescale: i.e. 
~ ( x ,  R-’)+u(x,O) (azimuthal) and p = O(R-’) as R t  co. Though satisfactory as a 
description of the Earth’s magnetic field, it is inappropriate for the Sun and other 
stars for which fields evolve on the faster convective timescale of the motion. In those 

b, = V x (U x b) + R-lV2b, V * b = 0, 
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cases the possibility of fast dynamo action becomes an important question which is 
yet to be satisfactorily resolved. 

For perfectly conducting fluids the solution of the magnetic induction equation is 
simple and given exactly by the Cauchy solution 

in which X i s  the position vector at time t of a fluid particle initially located at x. 
Exponential growth of b is then guaranteed by the exponential growth of aX,/az,. 
As Zel’dovich et al. (1983) point out this can be achieved by a simple linear straining 
motion. That is because the separation of two neighbouring particles increases 
indefinitely at an exponential rate. The flow is, however, unusual in that lul .T 00 as 
1x1 f 00. Steady two-dimensional flows, like the velocity (2.1) below considered in this 
paper, are integrable and streamlines lie on surfaces. Consequently, ClX&z, can only 
grow exponentially at the stagnation points and elsewhere aX,/i3zj grows at most 
linearly. In three dimensions, steady flows can be non-integrable and in that context 
Dombre et al. (1986) have considered spatially periodic Beltrami flows for which 
w = Au, where a( = V x u) is the vorticity and A is a constant. Typical of the 
examples considered are ordered regions of spiralling vortices like the two-dimen- 
sional velocity (2.2) but intertwined between them are regions in which the particle 
paths are chaotic and aX,/azj grows exponentially. According to (1.2), therefore, 
exponential growth of the magnetic field may be possible. 

The picture changes completely when the effects of small but finite diffusivity are 
considered. The reason is that, in the chaotic regions, the lengthscale of the magnetic 
field is reduced indefinitely and eventually diffusion necessarily becomes important. 
The structure of the magnetic field on the diffusive lengthscale is not determined by 
(1.2) and the exponential growth predicted by it is no longer applicable. Nevertheless, 
Amol’d & Korkina (19831, Galloway & Frisch (1984, 1986) have investigated 
numerically solutions of ( 1.1 ) for particular three-dimensional spatially periodic 
Beltrami flows. Galloway & Frisch (1986) achieve high values of the magnetic 
Reynolds numbers and in that limit the magnetic field produced is concentrated into 
ropes inside the chaotic regions. They find no clear evidence of fast dynamo action. 
On the other hand, some of their results hint a t  the possibility and so they cautiously 
conclude that the matter remains unresolved. 

Other recent investigations of fast dynamos have focused attention on the 
exponential growth of t?X,/Clz, resulting from unsteady motion. Zel’dovich et al. 
(1983, 1984) considered a random motion, which at any instant is a linear straining 
motion, and demonstrated the exponential growth of the magnetic energy. 
Moffatt & Proctor (1985) have re-examined the stretch-twist-fold rope dynamo of 
Vainshtein & Zel’dovich (1972). The model, simple to conceive, is difficult to analyse 
with precision. The process pivots on a sequence of cycles, in which the magnetic flux 
of a rope is doubled: the fluid flow necessary to achieve the effect (cf. the doubling of 
an elastic band) is complicated. Nevertheless, Moffatt & Proctor (1985) provide some 
analytic quantification of the model. Without diffusion this fast dynamo leads to 
field structures on ever-decreasing lengthscales. The large but finite electrical 
conductivity means that eventually the field structure is controlled by diffusive 
processes. Indeed, Moffatt & Proctor (1985) make the stronger statement that, in 
general, the magnetic field produced by a fast dynamo must have a lengthscale of 
order Rf almost everywhere. This means, of course, that the field structure is singular 
in the limit R .T 00 . 



Fast dynamo action in a steady flow 269 

The idea, upon which the present paper is based, is that the stretch-twist-fold 
mechanism can be accomplished with magnetic-field topologies simpler than the 
closed loops of the Vainshtein & Zel’dovich (1972) rope dynamo. Consequently the 
corresponding motion necessary to achieve the effect is likely to be straightforward 
in comparison with that envisaged by Moffatt & Proctor (1985). In  $2 a simple steady 
two-dimensional motion is described which leads to fast dynamo action: the magnetic 
field is certainly stretched, there is also twisting but no folding is necessary. The 
simplicity of the chosen motion highlights two significant points. They are that (i) 
exponential growth of aX,/ax, is not a prerequisite for a fast dynamo; (ii) relative 
simplicity of the motion may be a desirable feature because it permits the magnetic 
field to arrange itself, and in particular its scale, necessarily on a length of order R 2  
(Moffatt & Proctor 1985), so that it can regenerate itself efficiently. Indeed, straining 
motion with chaotic aXg/ax, may be very inefficient as much of the time fields with 
opposite orientations are likely to be brought into contact with each other leading 
to considerable mutual annihilation. 

The paper is organized aa follows. In  $2 our two-dimensional motion is described 
and its relation to the earlier models of Roberts (1972) and Childress (1979) are 
explained. In  $3 a heuristic picture of the mean-field dynamo is developed. The 
mathematical problem is reduced to determining the magnitude of an a-effect. That 
has two contributions which will be referred to as the ‘stretch’ and ‘twist’ 
mechanisms. The formal development of the mathematical model begins in $4. The 
governing equations are derived, the symmetry conditions are discussed, the ensuing 
boundary conditions are itemized and the resulting eigenvalue problem, for which 
the growth rate p is the eigenvalue, is formulated. The asymptotic analysis of the 
equations is restricted to the flux sheet boundary layers and the corner (or stagnation 
point) regions which connect them. They are considered in $85 and 6 respectively. 
A comprehensive discussion of the solutions is given in $7. It bridges the formal and 
heuristic developments of the earlier sections and contains all the main quantitative 
results. Various limiting cases are discussed in $$7.1,7.2 and 7.3, and from the results 
the maximum growth rate is determined in $7.4. The final $7.5 provides remarkable 
confirmation of the boundary-layer theory through excellent agreement with 
Roberts’ (1972) numerical results baaed on a modal analysis at Snite magnetic 
Reynolds number. A concluding remark is added in $8, and an analytic solution of 
the Childress (1979) problem (see $7.1) is derived in the Appendix. 

2. Themotion 
Relative to rectangular Cartesian coordinates 2, y, z Childress (1979) considered a 

class of two-dimensional spatially periodic flows for which the vertical z-velocity is 
constant on stream surfaces, 

(2.1) 

where 2 is the unit vector in the z-direction. For our purposes i t  is sufficient to study 
the family of spiralling vortices 

w=K+, +=aa,s inxsiny ( 2 . 2 ~ )  

(see figure l),  where K( > 0) is a constant and a, = 1 everywhere except within a small 
radius E of every X-type stagnation point. It is defined to be 

u = v+ x e+ w(+) 2, 

a&.) = 1+b(;J (T c E Q l ) ,  (2.2b) 
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FIQURE 1.  Projection of the streamlines in the (z,y)-plane with the sign of the z-component of 
velocity indicated. 

where r is the radial distance from the stagnation point. (Near the origin: 
r2 = x2+y2.) In the small regions r < E the vertical vorticity w has a weak singularity - 
and is given to leading order by 

(8 ln(r/E)+2)xy 
r2 

w = -  

On the other hand, the velocity itself remains finite and vanishes at the origin. Of 
course, the singularity of the vorticity at the stagnation point makes the flow 
difficult to achieve. Nevertheless, it  could, in principle, be set up in a viscous fluid 
by body forces with integrable singularities at the stagnation points. 

Guided by Childress’ (1979) results it is anticipated that magnetic field is expelled 
from the cores of the vortices and confined to sheets where $ is small, of order R-k 
These sheets expand in the corners where r is of order R-f .  An attractive feature of 
the motion (2.2) is that when 

the flow is almost uniform across the boundary layer II/ = O(R-4). In  fact, on the 
vortex boundary 0 < x < n the flow is given to leading order by 

R - ~ < E <  1 (2.4) 

II/, &, 0) = a&) = a&) sin x, ( 2 . 5 ~ )  

while in the corner region r = O(R-!) it is defined to leading order by the stream 
function 

$€(4 = Eln (WI2 xy, (2.5b) 

and similarly near the corner x = n, y = 0. The latter, (2.5b), is, of course, the usual 
stagnation-point flow whose magnitude is bolstered up by the numerical factor 
[In The important feature of the modified flow is the acceleration into and out 
of the corner, which is achieved by the factor a&) in ( 2 . 5 ~ ) .  This has important 
repercussions for the results but has no influence on the boundary-layer calculations. 
For that reason our analysis of the Roberts’ (1972), Childress’ (1979), E = 0 flow 
applies equally well to the case E $: 0. 

An important characteristic of the flow is the vertical z-displacement 48 of a fluid 
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particle after it has made a complete circuit of the stream surface, $ = constant. In 
terms of the time taken 47 it is 

S = TW = K$T (S = a(+), 7 = T(+ ) ) .  (2.6) 
On the vortex boundary $ = 0 the velocity is given everywhere by ( 2 . 5 ~ ) .  The time 
taken from the stiignation point (0,O) to the edge (8, 0) of the accelerated-flow region 
is ! ~ I c + O ( E ~ ) ,  of order unity, while the time taken to travel from ( E ,  0) to ( R - e , 0 )  is 
2 ln(cot($)), of order ln(c l ) .  The important point here is that the time taken to 
traverse the R-! corner region is never large, whatever the size of B ;  it is the time 
taken to approach it that is long. The results stated indicate that 

-In$ 

-2  Ins ($ 6 E ~ ) .  

(E' 6 $ 6 11, ( 2 . 7 ~ )  

(2.7b) 

Here the + >> c2 streamsurfaces miss the accelerated-flow regions, while the $ 6 E' 
streamsurfaces pass through them. To leading order the result implies that T is 
constant in the boundary layer $ = O(Rb). In  the limit R f  GCI with E fixed it yields 
the result 

-2lne ( E ~ O ) ,  ( 2 . 8 ~ )  

7 N  !jInR ( E = o ) .  (2.8b) 

From the dynamo point of view the important feature of the flow, (2.1), (2.2), is 
r 

its helicity which, when E = 0, is 

u * o  = K (sin2x+sin2y). (2.9) 

Since this pseudoscalar takes the same sign everywhere it follows that an a-effect can 
be identified which enables a mean-field dynamo to operate (see, for example, Moffatt 
1978; Krause & Radler 1980). The fact that Beltrami flows have this property was 
pointed out originally by Childress (1967, 1970), who also noted the integrability of 
the two-dimensional case 

K =  4 2 ,  O =  4214. 

Roberts (1972), however, was the first to fully exploit the two-dimensional Beltrami 
motion (2.2) in the dynamo context and it is referred to in his paper as the 'first 
motion'. 

A few brief remarks concerning the coordinate systems used are appropriate. For 
the boundary-layer calculations it is obviously convenient to have the Ox, Oy axes 
lying in the planes of the vortex boundaries. The modal analyses find it convenient 
to take axes Ox,Oy rotated by 45' about the vertical z-axis. Those are the axes 
adopted for the mean-field dynamo of Roberts (1972) and of Galloway & Frisch 
(1986), who also consider the two-dimensional motion. The rotation effects the length 
and velocity scales, and they must be carefully taken into account (see (7.38) below) 
when a comparison of the models is made. 

(2.10) 

3. A heuristic model 
It is assumed that the mean magnetic field b&, t )  produced is independent of the 

horizontal x, y coordinates and so lies in horizontal planes. As already explained, all 
magnetic flux is expelled from the vortices and is confined to sheets on the vortex 
boundary where + = O ( R f ) .  The mean strength of these flux sheets is nzz and ~6~ 
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FIQTJRE 2. A typical field line (broken) parallel to the y-axis, together with its frozen displacement 
(solid) after application of the jerk. The horizontal uH and vertical w motions are also indicated. 

/I + 

- w-9 -* 
FIGURE 3. The sign of the z-component of magnetic field in the tilted tongues of figure 2, when 

the initial y-directed flux vanes sinusoidally with z as in (3.1). 

on the planes y = nlc and x = mlc respectively, where n and m are integers. Roberts 
(1972) has already provided a heuristic description of the finite-magnetic-Reynolds- 
number dynamo which is, of course, relevant to our model. Nevertheless, the picture 
presented here is more appropriate to the Childress (1979) boundary-layer 
development and is similar in spirit to the usual simplified description of the 
stretch-twistifold rope dynamo. 

Consider for the moment only the flux half-sheet !&, in the region 0 < x < O(R-!), 
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on the interval --A < y < A .  Suppose that the motion is carried out in a jerk so that 
fluid particles in the boundary layer ($ = O(l2-i))  take up new positions instan- 
taneously by application of the motion (2.2) for time 7 (see (2.8)). The jerk produces a 
tongue of magnetic field, illustrated in figure 2, stretching along the x-axis from x = 0 
to A .  Simultaneously it is twisted by the vertical motion w which displaces and 
stretches it a vertical distance 8. The direct production of horizontal magnetic field 
in the tongues will be referred to as the ‘stretch’ mechanism. The production of 
vertical magnetic field by twisting with vertical stretching will be referred to as the 
‘twist ’ mechanism. They both contribute to the a-effect but their relative importance 
depends critically upon the vertical lengthscale 1 of the mean magnetic field produced 
(see (3.1) below). 

The ‘stretch’ mechanism is simple to understand. Since the jerk doubles the length 
of field lines, their strength is also doubled. Nevertheless, the total flux + ~ 6 ,  remains 
unaltered on the positive side of the y-axis, while exactly the same flux exists in the 
tongue but oppositely directed on either side of the x-axis. Specifically, fluxes of 
strength +!&, are located in the regions 0 < T y < O(R-f) ,  0 < x < R. Furthermore, 
if the original half-sheet !&, varies sinusoidally in the z-direction, say 

- 
b, = b(t)  sin(:) ( 1  = R*/3-’), 

then the sign of the x-directed field in the tongues alternates on the length, nl. 
The vertical displacements a($) cause the layers to be tilted at an angle 
$ = O(tan-’ (d&/d$)), to the (2, y)-plane as illustrated in figure 3. In  this way field 
of like sign is brought close together from either side of the plane y = 0 when 

To quantify the stretch effect, it simply assumed that all horizontal magnetic flux 

8, = - R-f% 7 ,  ( 3 . 3 ~ )  

where, by (2.6), CC, = - a 0 9  50 = Rfll .0 ,  (3.3b) 

and c0, which is of order unity, measures the width of the flux sheet. Following the 
instantaneous displacement, the field is allowed to diffuse horizontally for time 7 to 
smooth out its profile. Then the new flux ~ 6 , ( z , t + 7 ) ,  on the side y = 0,O < x < A ,  

at height z is composed of the tongue fluxes described above and the z-directed fluxes 
resident on the sides before the jerk. With careful note of the original location of the 
fluxes, the new value is given by 

(3.4) 

is displaced either up (when $ > 0) or down (when $ < 0) a constant distance 

26,( Z ,  t 4- 7 )  = 6, (Z 4- so, t )  - 6,( Z - so, t )  4- 6,( Z 4- so, t ) 4- z,( Z - so, t ) . 
Provided 6= varies slowly on the time 7 and on the length So, specifically 

1 % so, or Rf/Id0 < I ,  

a Taylor series expansion of (3.4) yields 
(3.5) 

The twist effect is less easy to understand and quantify because its influence on 
the magnetic field is spatially non-uniform. Evidently for a given vertical motion the 
strength of the vertical magnetic field KB produced in the tongue 
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Iyl < O ( f i ) , O  < x < IC is proportional to the time r for which the flow acts, and the 
strength 6, of the original magnetic field from which it is produced. It follows that 
the total vertical magnetic flux in the tongue can be expressed in the form 

where aT is a number dependent on R but not explicitly dependent on r or 61. In 

-R-faTrb,,, = ~,l,~n-~zlz~o, ( 3 . 8 ~ )  
addition (1.1 b)  gives - - 

where now the bar is used to define the local average 

- g+ 

I- 
b, = x - l  1 b,dy. (3.8b) 

Even when the non-uniformity of the flux &, is small, care must be taken to evaluate 
the flux difference in ( 3 . 8 ~ )  correctly. The simplest way to make a realistic estimate 
of its value is to measure the y-directed field at the origin (i.e. the point that is to 
be the tip of the tongue), and to measure the final 2-directed field near the tip of the 
tongue at 2 = R, y = 0. The right-hand side of ( 3 . 8 ~ )  then measures the excess flux 
at x = x over the value at  x = 0 that it would have had if it were not for the twist 
effects under discussion. As a result, there is an additional term 

- R- f a, Eu, (3-9) 

which must be added to the right-hand side of (3.6). It is difficult to make a sensible 
estimate of aT on the basis of the jerk model. For, as the detailed analysis of SS4-6 
below shows, its value is sensitive to the transverse diffusive mechanisms, which we 
have not attempted to quantify. 

The effect of vertical diffusion of magnetic field can also be included in (3.6). With 
a similar equation for the evolution of the complete horizontal mean magnetic field 
is governed by the dynamo equation 

bH,t = R-fV ~ a ~ b ~ + R - l ( l + a ~ ) b ~ , , , ,  (3 .10~)  

where a, = as+aT (3.10 b)  

and as and aT are of order unity. It admits solutions of the form 

- 

- 
b,  = b,[cos ( f i / 3 ~ ) ,  sin (fib%), O)]ept (3 .11~)  

(see, for example, Moffatt 1970; Roberts 1972; Busse 1978) where b, is a constant 
and the growth rate p is given by 

p = -ac/3-(l+aD)p. (3.1 1 b)  

Of course, Roberts’ (1972) heuristic picture of the dynamo also contained the 
ingredients of the stretch effect that we have attempted to quantify. The picture led 
him naturally to the solution (3.11)’ which for the steady flow (2.2) is valid for all 
values of /3 and R. The magnetic field it defines resembles a set of stacked ropes of 
horizontal width O(R-f), and depth O(Rb)-’). In  that sense it is a periodic version 
of the Vainshtein & Zel’dovich (1972) rope dynamo : the spatial periodicity obviates 
the need for the fold step in that model. The results of Roberts’ (1972) numerical 
calculations are illustrated in figure 5 below. Childress’ (1979) asymptotic results are 
valid in the limit of large R and small /3 (or more precisely /3cY0 -4 R-f -4 1 ; see (3.5)). 
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term in (3.11b) is negligible and the growth rate is -a&. His 

(3.12) 

as we explain in $7.1 below. 
The numerical value of ac in the Childress limit (3.5) has caused some confusion. 

Childress' (1979) numerical procedures led to poor convergence but he, nevertheless, 
suggested that 2aC/K = - 1.03. Anufriyev & Fishman (1982) repeated the calculation 
by a different method. They derived a number 

Q = 0.37670 ..., (3.13a) 

which they erroneously state leads to a value of ac differing from that given above 
by about a factor 5. The confusion appears to have originated from two separate 
points; different scaling of @ by the two authors, and a misprint in Childress (1979) 
of the value of ji q,, dz, which was never subsequently used. When due account is 
taken of these points, the value of ac is given by 

-- 2ac - - 2 4 2 9  = -1.06547... . (3.13b) 

Our analytic solution (see (5.1 a) and the Appendix, particularly (A 27)) confirms this 
value, which also a p e s  well with Roberts' (1972) results for finite R (see table 1 
below). 

To establish fast dynamo action it is sufficient that the growth rate (3.11b) has 
ac given by the finite value (3.13 b) for small fixed /3 in the limit R .T a0 . This non-zero 
double limit cannot be achieved when 8 = 0. On the other hand, when 8 .t. 0, (2.8a) 
and (3.3a) imply that T and &So tend to constants as Rtao.  Consequently the 
inequality (3.5), necessary for the validity of the Childress (1979) theory, can be met 
when /3 is sufficiently small (but nevertheless fixed independent of R) . These estimates 
are confirmed by the detailed analysis that follows in the later sections. There the 
theory is developed beyond the Childress limit and results are presented for 

&/38,, = O(1). (3.14) 

In addition the maximum growth rate is found (see (7.36) and (7.37)). The reader 
interested only in the results and not the mathematical details could omit $$4-6 and 
proceed directly to $7 where the solutions are discussed. 

In that case, the 
boundary-layer analysis reveals that 

cc, = 2ac( < 0) ,  aT = -ac( > 0) 

K 

4. The mathematical model 

expressed as the sum of modes of the type 
Like Roberts (1972) it is assumed at the outset that the magnetic field may be 

b = ~e [6(z,) exp (pt + iR@z)], (4.1 a) 

where here and elsewhere the subscript H is used to denote horizontal components, 
and 

6 = 6,+K& (4.1 b)  

is a complex vector in which the vertical magnetic field is scaled with the factor K. 
The horizontal components of the magnetic induction equation ( l . l a )  yield the 
equation 

(U,'v + h)  6, = 6, *VU, + R-'Vh 6, (4.2a) 
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forb,, where 
A ( $ )  =p+$+i&K$$ (4.2b) 

is complex and constant on streamsurfaces. According to (1.1 b) the vertical magnetic 
field KB is given by 

V,. 6 ,  = - i&K$8. 

- 

(4 .2~)  

The vertical electric field E plays a central role in the theory. It is related to the 
vertical electric current J by Ohm's law 

(4.3) z*(v, x 6,) = J =  R[E+Z.(U, X ~ H ) ] .  

From ( 4 . 2 ~ )  it can be shown that 2 satisfies 

(uH*v, + A )  B = R-'(AJ+v,A*v, B), (4 .4~)  

while from the vertical component of ( 1 . 1 ~ )  it can be shown, in addition, that 8 
(UH'VH + h) 8 + E = R-'(J+ vg B). (4.4b) 

satisfies 

Guided by Roberts' (1972) analysis and results, solutions are sought, as in $3, for 
which the mean magnetic field is given by (3.1 1 a) with p real. For convenience, the 
arbitrary constant b, is chosen to be 7c- l  so that 

( 6 )  = R - ~ ( I ,  -i70), (4.5) 

where the angled brackets are used to denote the horizontal average of tilded 
functions. The fluctuating part of the field, 6-(6), has the same 2x-periodicity in 
the x- and y-directions as the flow, (2.2), and so attention may be restricted to the 
torus [ - x ,  R] x [ -R, R]. Consistent with the governing equations, the reflectional 
symmetries in the planes x = 0, and y = 0 are accommodated by 

where the star denotes complex conjugate. The assumed form (4.6) also takes into 
account the requirements of the mean field (4.5) in as much as &, and iby are real 
on the x- and y-axes respectively. Again, consistent with the governing equations and 
the anticipated form (4.5) of the mean field, the rotational symmetries are met when 

i6(x, y) = [f X 6 ~ +  K&] (9, X - 2). (4.7) 

The electric current 3 and the electric field E possess the same symmetries as 8. 
The symmetries mentioned were useful to Roberts (1972) because they enabled 

him to restrict attention to a subset of the Fourier coefficients in his modal 
expansions. For our asymptotic problem, on the other hand, it means that only one 
boundary layer, say the vortex boundary 0 < x < R, y = O(R-t), and X-type neutral 
point, say the origin (x, y) = (0, 0), need be considered. They are discussed in detail 
in $55 and 6. 

The consistency of the assumed forms (3.11a), (4.5) for the mean magnetic field 
is finally established by averaging the magnetic induction equation (1.1 a). It gives 

(P+$) ( 6 )  = i&$Z x ( u  x 6 ) ,  ( 4 . 8 ~ )  
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and with the symmetry assumptions (4.6), (4.7) implies that 

( u  x 6) = R-~ac(6,)-iR~/3aD2 x (6,), (4.8b) 

where the constants ac(/3, R) and aD(/3, R) satisfy 

p+,P = -acf3-aD$ =-up ( 4 . 8 ~ )  

(say). Since (4.7) implies that i(6,) equals 2 x (6,) it is impossible to distinguish 
the two terms in the centre of (4 .8~) .  The constants ac and aD are, therefore, not 
unique and only the sum a/3 is meaningful. In  the case of multiple-length-scale 
dynamos, such as the Childress (1979) limit ( 3 4 ,  /3 is adopted as the expansion 
parameter and a is expressed by its Taylor series representation 

a(p) = a(O)+ - (0)/3+ ... . (3 (4.8d) 

Here a(0) is the a-effect and (da/d/3) (0) is the ‘turbulent’ Wusivity. For the 
parameter range (3.14) for which this paper is primarily concerned a is a complicated 
function of /3, which we determine in the large-R limit (see figure 4a below). 

In  order to accomplish the generalizations cited to Childress’ (1979) theory, the 
magnetic field b is expressed in the toroidal-poloidal form 

( 4 . 9 ~ )  b = V x AP+R-’KV x (V x #2). 
The vertical magnetic field KB and electric current J are then given by 

B = -R-’V&#, J =  -V&A, (4.9b) 

while the induction term in (4.3), which links E to J, is 

e * ( u H  x bH) = -uH*VA+R-’KVH+*V,$,z. (4.10) 

The z-component of the magnetic induction equation ( 1 . 1 ~ )  is 

B,t+uH*VHB = -U~*V~A+R-’V~*(~V~$,,)+R-’V~B. (4.11) 

The inverse curl of ( 1 . 1 ~ )  introduces the gradient of a potential R a K x .  The 
z-component of that equation is 

A, = R ~ K x ,  , - E + R-’A, tZ, (4.12) 

while the remaining horizontal components yield 

V , X = R ~ ( B V ~ + - - - V H A ) + P H X ~ ,  (4.13 a )  
(4.13b) where p H  = R-t[VH 4, t + K$vH #.z-R-lVe(VH $11- 

In terms of the complex tilded variables, (4.12) becomes 

= /3(aa+iKX”), (4.14) 

where a is defined by (4.8c), while (4.11) is closely linked with (4.4b). The component 
of ( 4 . 1 3 ~ )  normal to the streamsurfaces, namely 

v , + * v H ~  = R ~ ( ~ v H + ~ * ~ - _ v H - . v H ~ ) - R - ~ A u H * v , ~ - R ~ u H . v H ~ ,  

(4.15) 

is particularly important because it can be used to determine f in (4.14) (see (5.9) 
below). 
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function 5 = a$ is introduced (see (5.2b) below) and it is assumed that 
Since magnetic field is confined to streamsurfaces $ = O(R-!) the stretched stream 

6,+0, B+o,  J+O, B+o as(+oo. (4 .16~)  

Inside the square 0 < x < x , O  < y < A but outside the boundary layer it is con- 
venient to assume, in addition, that 

A+o, $+o asc+co. (4.16b) 

With attention restricted to the boundary layer 0 < x < x , t  = O(1). Only the 
half-layer 2 0 need be considered provided symmetry conditions on y = 0 are met. 
According to (4.6) they are 

(4.17) 

where the extra subscripts r and i denote the real and imaginary parts respectively. 
Note, however, that the symmetry arguments leading to (4.17) do not extend to the 
potentials A, 6 and 2 because of the choice of boundary conditions (4.16b). 

5. The boundary layer 
The boundary-layer analysis proceeds on the basis that the parameters 

a 
K'  

v = -- 

are both of order unity and that, in particular, 

v = 0(1), p = 0 ( 1 ) ,  R B 7 & 1 

(see (3.3), (3.14)). Consistent with these assumptions it is assumed that 

A = O(K/3), B = 0(1), B = 0(1), B = O(K/3). 

(5.la) 

(5.lb) 

( 5 . 1 ~ )  

In  the boundary layer, 0 < x < n, @ = O(R-!), excluding the corner regions, we 
follow Childress (1979) and adopt the boundary-layer coordinates 

r x  
a =  J qdx, (=&@, 

0 
(5.2a, b) 

where the flow velocity q( = qo) can be expressed in the form 

q = [a(2 - a)]! ( 5 . 2 ~ )  

(see ( 2 . 5 ~ ) ) .  The coordinate a varies from 0 at x = 0 to 2 at x = x .  The boundary-layer 
approximations, which follow, are valid provided that 

K/3 4 a (and 2 - 4 .  (5.3) 
The y-component of magnetic field on the boundary y = 0 is obtained from (4.10) 

upon division by q. In terms of the boundary-layer coordinates it is, correct to leading 
order, 

-a,,+iK/3Rb$,, = -qA,,-iK/3q-'b (6 = 0 ,  0 < a < 2), ( 5 . 4 ~ )  

where b= -sm Bdc. (5.4b) 
E 
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The symmetry condition &(z, 0) = 0 (see (4.17)) then yields 

A,,, = K/3q-’Ci (6 = 0, 0 < u < 2). (5.5) 

A , = - l  ( E = O ,  O < u < 2 ) .  (5.6) 

A,ar = *A,, (5 = 0, 0 < u < 2), (5.7) 

A,,,=o (5=0,  O < u < 2 ) .  (5.8) 

In view of our basic assumptions (5.1) and (5.3), the right-hand side of (5.5) is ignored 
and the normalization condition (4.5) implies 

On the other hand, the 2-component of magnetic field on the boundary y = 0 is given 
correct to leading order simply by 

where the term neglected is of order R-fKB. It follows that the symmetry condition, 
6z,(z,0) = 0 (see (4.17)) is met when 

The cumbersome equation (4.15) provides the key to the evaluation of the a-effect. 

2,r = S-EA,,, (5.9a) 

2=b+ Im cA,E‘dc.  (5.9b) 

It follows immediately from (4.14) and the symmetry condition E,(z, 0) = 0 on the 

(5.10a) electric field that a = cr,+%, 
where 

At leading order it simplifies considerably, 

and integrates to give 

(5.10 b) 

(cf. (3.3b) and (3.7) respectively). Though a is a constant, the parameters % and a, 
are, in general, functions of u. Nevertheless, within the framework of the governing 
equations (5.11), and the approximate boundary conditions (5.8), (5.12), both cr, and 
a, are constants correct to leading order. 

The diffusion equations governing A and B may be deduced from (4.12) and (4.11). 
To leading order they are the same aa those given by Childress (1979), namely 

A+- = A,& (5.11a) 

B,ff = &-A# (5.11 b) 

Together with (5.9a) they yield the single equation 

!.Y = f;t& 

P = C+f. 
which replaces (5.11 b) and where 

(5 .11~)  

(5.11d) 

In view of the symmetry of and the approximations (5.6), (5.8) to the boundary 
conditions on A, the corresponding boundary conditions applicable to P are, correct 
to leading order, 

= 0, 4 = Iq;y”(O) ( E  = 0, 0 < u < 2), (5.12) 
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where, in the notation of $6, pf)(O) is a constant independent of a. The solutions of 
(5.11a, c), which satisfy the boundary conditions (5.6), (5.8) and (5.12), are 

(5.13a) 

(5.13 b)  

where 0 is the Green function 
G(a, 6) = (ACT)-! e-p/4u. (5 .13~)  

The solution (5.13) is used to link the outflow values of the electromagnetic field at 
the corner cr = 0 to the inflow values at the corner u = 2. 

6. The corner region 
In  this section the corner region, near the origin (say), is defined by 

This means that the corner and boundary layer have the overlap region 

in which formal matching of solutions can be achieved. Similar results apply to the 
corner at 2 = A, y = 0. As Childress (1979) has explained, horizontal diffusion, which 
is important in fixing the boundary-layer structure (see (5.1 l)), becomes negligible 
as the stagnation point 5 = A, y = 0 is approached. In the corner regions (4.4a, b) are 
appropriate with the horizontal diffusion terms on their right-hand sides ignored. 
They are readily solved and yield the results 

a a  1 .  (6.1) 

K / 3 4 a < l ,  (6.2) 

(6.3a) 

(6.3b) 

where the superscripts i and o distinguish the inflow and outflow values respectively, 

and from (4.2b), ( 4 . 8 ~ )  A is A = -a/3+iK/3[. ( 6 . 3 ~ )  

The time 7 taken to pass the corner is, like A, a function of E (see (2.7)). Nevertheless 
to leading order 7 is a constant (see (2.8)). 

To complete the boundary-layer problem, it is necessary to link the inflow and 
outflow values of A and P,  as indicated in $5 above. First, it  is easy to show from 
(6.3a, b) that 

and together with (4.14) and ( 5 . 9 ~ )  they yield the result 

- iK/3B(O) = e-A7{E(v - iK/3B(')} (6.4) 

A(? = e-A'A19, 
where, by (5.la) and (6.3c), 

A7 = p(v+i[). 

(6.5a) 

(6.5b) 

Secondly, it  follows from (4.14), (5.9b) and (5.11d) that 
00 

KP = -2iP-lE-S ( 2 i ~ + K c ) A , ~ d r .  (6.6) 
5 
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Together with (6.3a) and (6.5) it  gives 

The link between the r = 0 and r = 2 solutions (see (5.13)) is completed by noting 
that the symmetries (4.7) imply 

A,& 5) = iAy(E), P(0, E )  = ip0m ( 6 . 8 ~ )  

where A,,& E )  = AI~cn,  P(2, E )  = mE). (6.8b) 

The only remaining detail over which some care must be taken is whether the 
outflow values achieved as 51 0 are equal to the applied values on 5 = 0. For 
example, it  is clear from the nature of the heat-conduction solution for A that 

(6.9) Iim Ap) =+ -A,(o, 0) = 1, 
6W 

in contradiction with the outflow boundary condition (5.6). This means that a further 
boundary layer is triggered at the corners, as recognized by Childress (1979) and 
analysed subsequently by Anufriyev & Fishman (1982). Here the flow velocity is slow, 
magnetic induction is negligible and the electric current is given by Ohm's law 

d = R-'3 (6.10) 

for a stationary conductor. This provides the dominant balance in both ( 4 . 4 ~  and 
b). Furthermore (5.9) remains valid and, since B and 62, stay finite, ?suffers no jump 
in value. It follows from (4.14), (6.9) that di is discontinuous, 

(6.11) 

The fact that both 2 and d are continuous on the outflow boundary is important 
because continuity of F is then implied by (5.11 d). With (6.8b) it yields the result 

(6.12) 

which provides the one remaining boundary condition necessary to complete the 
mathematical formulation of the boundary-layer problem. 

In the discussion of the solutions, which follows, ,u and IJ (see ( 5 . 1 ~ ) )  provide 
convenient measures of p and a respectively. In  terms of our principal boundary-layer 
functions, 2 and 3, the expressions (5.10) for a become 

where use of (5.9b), (5.11d) yields 

(6.13b) 

7. The solutions 
Before discussing the nature of the solutions, some additional clarification of the 

stretch and twist dynamo mechanisms is appropriate, which relates the formal 
analysis of the previous sections with the heuristic development of $3. To that end 
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the boundary-layer equations for the flux sheet 0 < x < R ,  y = O(R-:) are averaged 
locally as defined by (3.8b). Equation ( l . l b )  (or ( 4 . 2 ~ ) )  gives 

( 7 . 1 ~ )  

while the z-component of the magnetic induction equation (1.1 a) (or (4.2a)) yields 

(7.lb) 

The left-hand side of (7.1 13) describes the convection and diffusion of a passive scalar. 
The source term on the right is, in the notation of $4, 

Here the vertical transport of magnetic flux n a Z  forms the basis of the heuristic 
picture of the a-‘stretch’ effect (see (3.4), (3.6)). Likewise, the advection term on the 
left of (7.1 b), namely 

-qZz,z = K ( g ) , ,  - R - ’ R ~ K  BdE1,; (7.3) 

provides, in the heuristic picture, the basis of the a-‘twist’ effect (see (3.7), ( 3 . 8 ~ ~ ) ) .  
The formal identification of (7.2) and (7.3) with as and aT is given by (5.10). 

The mathematical problem formulated in (5.13), (6.3c), (6.5), (6.7), (6.8), (6.12) and 
(6.13) was solved numerically. Equations for the inflow values of the four functions 

AI’) E ,  Pi), fli) a t  N +  1 equally spaced points, 6, = TI&, (0 < n < N), were set 
up and’solved by a Newton-Raphson method. The value of N and the separation 
of points El necessary for satisfactory convergence varied with p. The magnitude of 
the eigenvalue v (the magnitude of the a-effect, see ( 5 . 1 ~ ) )  is plotted versus p (a 
measure of 8, see (5 .1~) )  in figure 4(a). The relative importance of the ‘stretch’ and 
‘twist ’ effects are made clear in figure 4 (b), where, in addition to v, the magnitude 
of vs is also plotted versus p. The computed function v@) gives the growth rate 

p = 7 - l ~ ~ -  (KT)-~$ (7.4) 

(see (4.8c)), which highlights several interesting limits discussed in detail in the 
following subsections. Before proceeding, we note that K appears for the first time, 
as an independent parameter, in the vertical diffusion term of (7.4). Elsewhere K and 
8 have always appeared as the product KP. 

7.1. The ca8e p 4 1 

In the Childress (1979) limit 
p 4 1  (7.5) 

the problem has an analytic solution which is derived for the first time in the 
Appendix. It gives 

where the number vc is defined by (A 27). This result provides a useful check on the 
numerical scheme. In particular, vc is given correct to four significant figures when 
N = 48, El = 0.5 and EN = 24.0. 

When p is a small fixed positive number, it follows from (2.8), (7.4) and (7.6) that, 
correct to leading order, positive growth rates, 

(7.6) v = vc+O(p) ,  

( 7 . 7 4  

(7.7b) 
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FIQWE 4. (a) The eigenvalue Y (the a-effect) plotted versus p (the wavenumber). The results of 
the complete numerical problem are given by the solid line, while the asymptotic result (7.33) is 
denoted by the broken line. (a) The eigenvalue Y and us (the a-‘stretch’ effect) plotted versus p. 
Note that the scale is different to figure 4 (a), and that v, (the a-‘twist’ effect) is Y- us (not plotted). 

are achieved in the limit R t a. It follows from (7.7 a) that the weakly singular E $. 0 
flow is a fast dynamo. On the other hand, the Roberts (1972), Childress (1979) E = 0 
flow is not a fast dynamo in the usual sense. Nevertheless, i t  is very efficient and 
predicts growth rates larger than any inverse power of R (i.e. (7.7b) implies 
p B O ( E n )  for all positive n). We, therefore, call it an ‘almost’ fast dynamo. 

The small-p amumption leads to a number of simplifications in the boundary-layer 
problem. The most important stems from the fact that A7 is of order p. It implies 
that the factor e-AT in (6.5) takes the value unity and so leads to the result 

10 
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central to the analysis of the Appendix. Since p is absent from (7.8), the problem for 
&a, k )  can be solved independent of P. With 2 known and of order unity, it follows 

(7.9) 
from (6.13b) and (6.7) that 

According to (6.13), this result implies that P does not make a significant contribution 
to the value of the a-effect. Indeed, the stretch and twist contributions as and aT 
given by (3.12) are based on the result vc = fvs = -vT derived from (6.13). 

The essential feature of the Childress (1979) model described is the lengthscale 1 
in the z-direction (see (3.1) above) which is long compared to the short horizontal 
length of order R-3. It means that z-dependence may be ignored? in the a-effect 
calculation and so the vector potential A satisfies the two-dimensional heat con- 
duction equation 

(uH*V) A = R-'V& A (7.10) 

(see (4.3), (4.93), (4.10) and (4.12)). Since horizontal diffusion is negligible in the 
corner regions (see Q 6), A enters and leaves with the same values (see (7 3)). Childress 
(1979) considered the effect of the uII motion on a mean magnetic field uniform in 
the s-direction. It leads to the well-known problem of flux expulsion for which the 
first numerical simulations were performed by Weiss (1966) ; our analytic solution 
appears in the Appendix. Childress (1979) determines the vertical field KB, just at3 
here, on the basis that P = 0 (see (7.9)) with the consequence that 

B = igA, [. (7.11) 

His a-effect calculation is reduced to the evaluation of the boundary-layer integrals 
which appear in (7.2) and (7.3), giving 

a(0) = -Kvc (7.12) 
in (4.8d).  

Unlike the a-effect a(O), which is fixed at leading order, the 'turbulent' diffusivity 

P = Ob).  

(7.13~) 

(we (4,8d)), is determined by the order-,u terms in our expansions. It is comparable 
with the molecular diffusivity when 

K-2 = O(7). (7.13b) 

The numerical results illustrated in figure 4 (a) show clearly that (dvldp) (0) is positive 
implying a negative value for the diffusivity (7.13~). This result contrasts 
dramatically with the heuristic arguments of Q3 which led to the positive coefficient 
aD, also of order Kg7. There are two reasons for the apparent discrepancy. First, the 
vertical advection of magnetic field occurs at the corners, where diffusion ie 
inoperative. Consequently, though use of 4 in (3.4) is appropriate for tho 6, field, 
the mechanism that it characterizes is not as potent for the EZ field which is not 
displaced so far. The importance of the diffusive effects is, therefore, overestimated 
by (3.6). Indeed, our detailed analysis of the later sections ignored vertical convection 
of the horizontal magnetic field in the boundary layers entirely. Secondly, as the 
numerical results of the following section show, the role of vertical advection in the 
corner regions (at least for small p)  is to lengthen the horizontal scale. It means that 

The t-dependence can also be ignored because of the relatively slow growth rate that ensues. 
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the flux sheet width 5, (see (3.3b)) is an increasing function of /3 with the immediate 
consequence that (da/d/?) (0) is negative, m in ( 7 . 1 3 ~ )  above. 

An interesting comparison can be made with the small-R calculations of the 
‘turbulent’ diffusivity by Bullard & Gubbins (1977). In the appendix of that paper, 
they consider a double expansion in which the vertical velocity K$, like the vertical 
length scale 1, is assumed to be large: 

Z=O(K),  K %  1, R 4  1. ( 7 . 1 4 ~ )  

In that limit, the a-effect and ‘turbulent ’ diffusivity are of comparable magnitude. 
Furthermore, the molecular and ‘turbulent ’ diffusivities are comparable when 

KR = O(1). (7.14 b )  

With R small, the mean horizontal magnetic field is only perturbed weakly by the 
motion, but the dynamo mechanism remains essentially the same. In  their model, 
‘turbulent ’ diffusion can be traced to  the vertical advection of horizontal magnetic 
field exactly as in our heuristic calculation of aD in (3.6). Their diffusivity, like a,,, 
is positive. Our results appear to indicate that, for fixed K, that the potency of the 
Bullard-Gubbins mechanism diminishes with increasing R. As explained in the 
previous paragraph, the corners play a key role when R is large. The long time T spent 
near them provides an important additional parameter inapplicable to the Bullard 
& Gubbins (1977) analysis but upon which our analysis pivots. 

Further insight into the question of positive and negative turbulent diffusivities 
is given by Parker (1979, Chap. 18) in his description of turbulence in perfectly 
conducting fluids. There he begins with the Cauchy solution (1.2) and assumes that 
the displacements of fluid particles from their initial positions, namely 

g = x-x, ( 7 . 1 5 ~ )  

is small. It follows from (1.2) that 

(7.15b) 

and so the value of b(x,  t )  can thus be obtained by an expansion procedure. Moffatt 
(1978, Chap. 7.10), like Parker (1979), adopts a similar approach and uses the result 
to calculate the mean EMF a. The point is that they both find two contributions 
to the turbulent difksivity and Parker (1979, Chap. 18.4.2) illustrates them by a 
particular example. In  it he shows that one contribution ((e) in his (18.65)) comes 
from the displacement of magnetic field without distortion. It is essentially the 
diffusive mechanism which we described by (3.4) and which led to our positive 
diffusivity in (3.6). The other contribution (- (e a[,/az) in his (18.65)) depends like 
the a-effect on the additional twist of the magnetic field. It is linked to our (7 .13~) .  
Parker (1979) points out through his example that this latter effect may be negative, 
as we have found for our problem. 

7.2. The m e  p = 0(1 )  
No approximations can be made to the boundary-layer equations when 

p = 0 ( 1 ) ,  K-* = O(7) (7.16) 

(or smaller). Since the formal development of $84-6 hides many of the physical idem 
leading to these complicated equations, a comparison problem is developed here. Its 

10-2 
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purpose is to isolate the key issues that our theory must face. Quite simply the heat 

e,,+(U,-v)e = R-1V2e. (7.17) conduction equation 

is considered for some passive scalar 8. It generalizes (7.10) by restoring the z- and 
t-dependences and, in the notation of 94, it  is simply 

(U,*V + A )  8 = R-'V% 8. (7.18) 

The assumption (7.16) implies that K/3 is small; 

KB = O(7-l). (7.19) 

It means that the vertical lengthscale R3p- l  is large compared to the horizontal 
lengthscale R-t. With v of order unity, (6.5b) implies that 

h = O(7-l). (7.20) 

In turn, (7.20) leads to the boundary-layer approximation of 95, namely the neglect 
of the term A8,  in (7.18). It means that the contributions from vertical diffusion Po, 
vertical convection i(&w) P8, and time dependence p 8  are all negligible exactly as 
before in the Childress (1979) limit. Differences arise in the corner regions, where, 
because fluid particles take the long time 7 to pass through, the term A 8  in (7.18) 
plays a significant role. The corner approximation of 96 is to neglect horizontal 
diffusion. The reduced form of (7.18), 

(UH'V) 8 = -h8, (7.21) 

is readily solved giving, in the notation of $6, the result 

@o) = e-AT@U, (7.22) 

where, of course, A7 is of order unity. 
The coefficient e-A7 has three factors, e-pT, e-p' and eiar(Rtw). The first reflects the 

fact that (4.1 a) assumes an amplification of eP7 in time 7,  whereas there is no growth 
of 8, when e,t = 0 ! The second gives the decay due to vertical diffusion. It is, however, 
negligible within the framework of the approximation (7.19), i.e. PT = O(K-%-'). 
The third and final contribution is interesting. It arises because fluid particles are 
displaced a significant vertical distance of order R-~KT (remember that 7 a 1) which 
is comparable with the vertical lengthscale R4S-l .  This process forms the basis of 
the 'stretch' dynamo mechanism described heuristically in $3. It leads to the 
possibility of bringing like-signed 8 into close contact from either side of the vortex 
boundary $ = 0 (see also figure 3). Indeed, figure 4 ( b )  shows a sharp increase in the 
value of %, the a-'stretch' effect, whenp is roughly 0.2. It is reflected in the numerical 
results by a slow spatial decay of the eigenfunctions, particularly when p lies between 
roughly 0.05 and 0.15. There, 0.05 < p < 0.17, good convergence was obtained with 
N = 36, 6, = 1,  EN = 36.0. For p greater than 0.2 the decay distance shortens 
monotonically. The results illustrated in figure 4 have g1 = 0.5 for 0.18 G p G 1.0 
and 6, = 0.25 for 1.05 < p < 3.0, while the corresponding value of EN was system- 
atically reduced. The spatial structure of the eigenfunctions themselves is not 
particularly illuminating. Just as in the case of small p, for which Anufriyev & 
Fishman (1982) provide an illustration giving contours of constant A, the eigen- 
functions exhibit the features of a spatially damped thermal wave (see (7.10), also the 
Appendix) induced by periodic forcing at the boundary 5 = 0. 
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7.3. The m e  p % 1 
Some qualifications must be added to the remarks of the previous subsection when 

y % l .  (7.23 a) 

Obviously, i fp  increases, then the drop e-p  at the corners becomes more pronounced. 
Furthermore, if PT remains small, 

K-2yB Q 7 ,  (7.233) 

vertical diffusion continues to be insignificant everywhere. On the other hand, the 
vertical advection at the corners has the dramatic effect of tilting the isotherms 
severely. As a result a fine structure of almost vertical bands of opposite-signed 6 
are produced on the horizontal lengthscale B+y-l, which is much shorter than the 
boundary-layer width of order R f .  This leads to considerable transverse diffusion in 
the outgoing boundary layer. Indeed, this is exactly what happens to A,E in (6.5), 
with the result that the 'stretch' contribution a, to the a-effect is found to evaporate 
(see figure 4 (b) and (7.26)). On the other hand, because of the symmetry of the vertical 
magnetic field produced in the corners, a small remnant flux nKB, remains which 
is convected out along the boundary layer without any significant decay (see (7.3) 
and (7.30)). As y increases, the a-effect, which now relies on the twist mechanism, 
decreases in strength. Nevertheless, within the framework of the neglect of vertical 
diffusion (the term- (K7)-2p2 in (7.4)), the dynamo operates with ever-increasing 
growth rate (i.e. dp/d,u 

An analytic solution of the governing equations is possible when y is large because 
the integrals (5.13) and (6.7) can be evaluated asymptotically using the method of 
steepest descents. To begin with, the integral in (5.13a) is small, leaving 

0, see (7.34b)). 

(7.24) 

correct to leading order. The lower-order imaginary contribution to A is determined 
by first noting that (6.5), (6.8) and (7.24) imply 

&O, 6 )  - e-Ff8 sin (&), (7.25a) 

where (7.258) 

The integral ( 5 . 1 3 ~ )  then gives 

&cr, 6)  - f(ncr)-t voy-* e-%/4' 01-1 4 t~ < 2). (7.26) 

As explained in the previous paragraph, the fine structure produced at the corner 
on the flux scale 6 = Oh-') is rapidly diffused in the outgoing boundary layer leaving 
a very weak tongue of magnetic flux (7.26). It follows from (6.13b) that the small 
stretch contribution to the a-effect is 

us=-' $I --B VO' (7.27) 

The asymptotic evaluation of P begins with (6.7). The leading-order term is 
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by (7.24), (7.25b). With (6.12) it  gives 

p ( 0 )  = 2v0, (7.29) 

which with (6.13a, c), (7.27) yields the central result 

v v N VT - vo, 3 = o(p-2). (7.30a, b)  
YO 

The value of P in the boundary layer derived from (7.28), (6.8) and (5.13b) is 

P(a,E) - 2v0{i erfc[&]+(~o)-ip-' (p-' < cr < 2). (7.31) 

From (5.9), (5.11d) the corresponding value of B is given by 

&, E )  = @ E + E - q &  - (xu)-t(-iv,+tE) e-P/4u (p-' < u < 2). (7.32) 

The twist contribution to the a-effect is linked with the production of vertical 
magnetic field (see (3.7) and (7.3) above). The corresponding value of aT defined by 
(5.10b) is given in scaled form by (7 .30~) .  It is, however, (7.32) that clarifies its origin. 
For even though the real (odd) part of B dominates (vo 4 1, see (7.34a)), it is the 
smaller imaginary (even) part which yields the result (7.30a). 

Together (7.253) and ( 7 . 3 0 ~ )  provide the solution to the eigenvalue problem, 
namely the function v(p), which is the solution of 

(7.33) 

The plot of v versus p is given by the broken curve of figure 4 (a). By p = 4.0 it shows 
good convergence to the solid curve obtained by numerical integration of the 
complete boundary-layer equations. It should be emphasized, however, that fine 
spatial resolution is required to resolve the factors etE, which appear in the integrals. 
Indeed, the numerical solution at p = 4.0 required N = 62, El = 0.125, EN = 7.75 in 
order to obtain satisfactory results. The large-p behaviour, which is well established 
at p = 4.0, is clearly evident in figure 4 (a, b) when p is as small as unity. Indeed, even 
by p = 0.5 the a-'stretch' effect has largely disappeared. Finally, note that, for 
large p, (7.33) can be solved giving an awkward asymptotic expansion whose leading 
term is 

v - p-l lnp, (7.344 

which with (7.4) gives 
p - 7-l lnp  (1 < p 4 7 ) .  (7.34b) 

7.4. The maximum growth rate 

The slow increase of growth rate p with B exhibited by (7.34b) cannot continue 
indefinitely. Indeed (4.8c), (&la) ,  (7.4) and (7.33) give 

p = - tfK e-(P+P)+- tf2 (7.35) (:Ii 
and differentiation yields the expression 

@ma, + PmaJ-' = iiGLc-~, (7.36 a )  
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for the maximum growth rate pmax, which occurs when dp/d/3 = 0 at  /3 = ,dmaX (say). 
Correct to leading order (7.35) and ( 7 . 3 6 ~ )  are satisfied when 

B,,, - (27)-f, p - (27)-' 1117. (7.36b, c) 

Evidently B,,, is small as required by our asymptotic theory. On the other hand, 
as (7.4) makes clear, the result (7.36) depends on the low-order term p in (7.35). 
At that level, other terms may be present that our zeroth-order analysis fails to 
predict. It should be emphasized, however, that the value of p,, is not particularly 
sensitive to  the terms $. To leading order the result is the same if p is replaced by 
M$ for any positive constant M .  It is, therefore, likely that (7.363) provides a 
reasonable estimate of the maximum growth rate. For the E = 0 case, (2.8b) and (7.36) 
yields the result In (In R) 

Pmax l n ~  9 

which occurs when the vertical wavenumber is 

( 7 . 3 7 ~ )  

(7.37 b)  

7.5. The Roberts' dynamo 

It is fortunate that Roberts (1972) has provided such a thorough and comprehensive 
set of numerical results for his first motion, which coincides with our E = 0, Beltrami 
case (2.10). Since his results are obtained at finite values of R, whereas ours are valid 
as R 1' 00, a comparison of the two provides a useful independent check of both 
analyses. Though our boundary-layer approximations appear to be based on expan- 
sions involving T-'( = 2/ln R) (see (2.8b), (5.1 a)), which is itself linked with R, closer 
inspection reveals that KB is, instead, the natural expansion parameter (see (5 .1~)) .  
We stress the existence of two independent parameters, R-l and K/3, because it proves 
useful in the comparisons that follow. 

Since Roberts (1972) used different coordinates (see the end of $2) a preliminary 
change of variables is necessary. With K = d 2 ,  A(R), dR) and j are related to our 
R, a and /3 (the superscript R is used to avoid confusion with our variables) by 

or alternatively from (2.8b) and (&la), 

The corresponding formula (7.4) for the growth rate is 

P = (&)(.-A). 

(7.38 a )  

(7.38 b )  

( 7 . 3 8 ~ )  

For the case j -4 1 (i.e. small /3), table 3 of Roberts (1972) lists ldR)I for various 
values of This is the Childress (1979) small-p limit of $7.1. In table 1 the values 
for A(R) less than unity are translated into our primitive R,v variables. It is 
encouraging to find that the value of v for R = 16, 32 and 64 differs from our value 
(7.6) by less than 2 yo. On the other hand, the value for R = 128 is badly out of line 
and must be interpreted cautiously. Indeed, Roberts (1972) does not claim three- 
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R 4 8 16 32 64 128 

B ih 
0.266 0.187 0.131 0.085 

t t 
0.394 

t ACR) 

V 0.620 0.557 0.532 0.529 0.524 0.48 
0.620 

TABLE 1. The a-effect v predicted in the limit p+O by Roberta’ (1972) numerical results for a(R) 

t a 1 2 4 

i 

FIGURE 5. A comparison of Roberta (1972) numerical results with our asymptotic results. The solid 
curvea, which are reproduced directly from Roberts (1972, figure 7), give the growth rate p plotted 
versusj for various values of A(R) (see (7.34a, a)). Our asymptotic results are plotted broken. The 
ehort (long)-broken curves correspond to the regimes in which p / ( v  In R) is less (greater) than (see 
(7.38~)) and where v(p) is given by figure 4(a). 

significant-figure accuracy for that case which would appear to be at  the limit of his 
numerical capability. 

The complete picture of Roberts’ (1972) numerical results are summarized in his 
figure 7, which plots growth rate p versus wavenumber j for the nine distinct caaes 
A(R) = 2-N ( N  = - 2, - 1 , 0,1, . . . ,6). For small A ,  specifically N 2 3, the curves illus- 
trated in his figure exhibit similarity form : the last three (N = 4,5,6) are reproduced 
here as the solid curves in figure 5. This observation is consistent with the evidence 
of table 1 that asymptotic behaviour is beginning to emerge with R aa low as 16. To 
test this possibility further our numerical representation of the function u ( p )  
illustrated in figure 4 (a) is used to plot p versus j as the broken curves on figure 5 
for the same three cases, namely R = 32,64,128. 

Since our expansion scheme has assumed that p/ln R is small, our results plotted 
in figure 5 become less reliable a s j  increases. In an attempt to quantify the reliability, 
the curves are short-broken when the ratio of the diffusivity term to the a-effect term 
p/(v In R) is less thani and long-broken otherwise. The short-broken curves agree well 
with Roberts’ (1972) results but significant quantitative differences are apparent for 
the long-broken curves on which p/(v In R)  exceeds i. As already explained, we do not 
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expect our theory to be valid when p/ln R is of order unity and any similarity of the 
results is purely fortuitous. 

An intriguing feature of Roberts’ (1972) results, which clearly caused him some 
concern, is his kink on the solid curves which occurs whenj is close to t (see figure 5) .  
The same feature is evident on our short-broken curves, though not so pronounced. 
Its origin, however, is clear from figure 4 (a). Apparently, as /f increases, the strength 
of the a-effect drops slightly and is then followed by a sudden rise. In turn, this 
parameter-sensitive behaviour is linked with the dramatic increase of cc, illustrated 
by the plot of vs in figure 4(b). It means that kink isolated by Roberts (1972) occurs 
when the a-‘stretch’ effect is working at  its best. Nevertheless, the intensity of the 
process is largely offset by the a-‘twist ’ effect which adjusts its value so that changes 
in the total a-effect are less pronounced. The identification of this kink and the 
explanation of the underlying dynamo mechanisms constitute the main successes of 
the present asymptotic analysis. 

8. Concluding remark 
The boundary-layer development of this paper has identified fast dynamo mech- 

anisms that can operate in certain simple spatially periodic flows. The fact that a 
weak singularity at  the X-type stagnation points is necessary (the case 8 4 0) for the 
dynamo to be fast is in itself significant. The point is simply that magnetic flux in 
any large-magnetic-Reynolds-number dynamo caused by steady flow is likely to be 
confined in sheets or ropes which lie on streamlines passing through stagnation points. 
Since the flow velocity vanishes a t  the stagnation points, the long time 7 ,  of order 
In R, taken for fluid particles to pass by is likely to limit the speed of the dynamo 
for physically realistic flows. It must, however, be stressed that our analysis is only 
concerned with integrable flows, the picture for the non-integrable flows investigated 
by Galloway & Frisch (1986) is less clear. Recent investigations (see Childress 1979; 
Childress & Soward 1984; Ghil & Childress 1986; Soward & Childress 1986) suggest 
that an a-effect of order unity may be possible. If the mean magnetic field produced 
by i t  can exist on a lengthscale comparable with the motion, then growth rates of 
order unity can be expected. For the moment these ideas are purely speculative as 
the quantitative evidence is slim. 

I am grateful to S. Childress, H. K. Moffatt and an anonymous referee for their 
helpful remarks and constructive criticisms. I have also benefitted from discussions 
with C. A. Jones, M. R. E. Proctor, G. 0. Roberts and P. H. Roberts. 

Appendix 
Until now an analytic solution of Childress’ heat-conduction problem has proved 

elusive (see Childress 1979; Roberts 1979). That such a solution exists is suggested 
strongly by Anufriyef & Fishman’s (1982) numerical discovery of the number (A 23) 
below. The problem consists of finding the periodic solution 

W+ 8,5) = e@, 5) (A 1) 

of the heat conduction equation 
8.u = ?EE 
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on E > 0 which satisfies the boundary conditions 

Its analytic solution outlined here is obtained using the Wiener-Hopf technique, as 
Childress (1979) suggested. 

The analysis begins with the introduction of the complex function 

&u, t;) = O(u, 6)  + iO(a + 2,E). (A 4) 

With the boundary conditions (A 3 ) ,  the periodicity condition (A 1) can be 
strengthened to 8(a+4, 5) = -O(u, 6 )  which in turn implies that 

A(U-2,E) = i.&u,E), (A 5 )  

consistent with (6.5) and (6.8), where h = 0. It is easy to show that, in terms of e(0,E) 
and 4 2 ,  E ) ,  the Green function solution of (A 2) and (A 3)  on the interval 0 < u < 4 
is simply ( 5 . 1 3 ~ ~ ) .  

When (5.13a) and (A 5 )  are evaluated at u = 2, they yield an integral equation 
for &2,[). Differentiation of that equation with respect to 5 gives 

where 

and the constant r is defined by 

W 

1+iT=  -A(2,0) = $dE. 
0 

The principle quantity of interest is the total heat ed t ,  which remains constant 
on the insulating interval 2 < u < 4. Its  value, which defines the number (3.13b), is 

while vc, so defined, is the leading-order coefficient in the expansion (7.6). 
The boundary conditions 

Re [A, fE(a, O ) ]  = Im [A,[(u,  O ) ]  = 0 on 0 < u < 2, 

mean that 4 can be extended naturally to negative 5 upon defining 

(A 10) 

$ ( - E )  = $ * ( E ) .  (A 11) 
By this device, it  is readily established that (A 6) holds everywhere, - co < 6 < co, 
and not simply on the semi-infinite positive interval. To simplify the analysis we make 
the change of variables 

f [  = 2/82. (A 12) 
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The crucial step (A 11) now enables us to take the Fourier transform of (A 6), which 
yields 

(A 13) 
i+r 

where 
a) 

$+(k) = s $ eikxdx, 

$-(k) = I $ eikzdx. 

0 

0 

-W 

(A 14a) 

(A 14b) 

In  view of (A 11) $* has the property 

= 4 w  (A 15) 

for real k, which suggests that (A 13) should be written in the alternative form 

The form (A 16) leads to a relatively straightforward Wiener-Hopf problem which 
can be solved by standard methods. The key step is to write 

sinhz= z fi [1+(&;>1] 
n-1 

(see, for example, Abramowitz BE Stegun 1965, p. 85) and to factorize (A 16) into the 
form 

(A 18) 
where B+(k) and BJk) are analytic in the upper and lower halves of the complex 
k-plane. That means that B is analytic everywhere and consequently a constant 
independent of k. Its value is fixed by the condition that 

B+(k) = B J k )  (= B, say), 

$ + ( k ) + ~  aaImkfco,  (A 19) 

or equivalently $-(k) + O  as Im kJ.- 00. The result is 

(A 20a) 

Here we have used the property 
a) 

Imkfco lim { n-1 x ~ n ~ , ( k ) }  = iix, (A 21) 

which fixes B by guaranteeing (A 19). 

It gives 

With (A 20) it reduces to 

which is satisfied when 

The unknown constant r is now determined by application of the condition (A 8). 

1 + r =  d84+(0) .  (A 22a) 

i+ir= (i+r)i(i-eiK14), (A 22 b) 

r= 1 / 2 4  (A 23) 
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This is the result reported by Anufriyev & Fishman (1982, end of $4). They confirm 
(A23) by their numerical method correct to five significant figures. The formal 
mathematical solution of the integral equation (A 6) is now complete. It is 

# ( E )  = Jrn [$+(k)+$-(k)] e-ikE/d8dk, (A 24) 21c -m 

in which $+ and $- are defined by (A 15), (A 20) and (A 23). Clearly this integral 
can be expressed as an infmite sum by evaluating the residues of $+ and 4- at the 
simple poles. That is easily done but the coefficients in the resulting infinite series 
are given by infinite products, whose numerical values are difficult to obtain. The 
procedure leads to the harmonic expansion proposed by Roberts (1979, equations 
(B l), (B 2)) and employed by Anufriyev & Fishman (1982, equation (14)). 

Finally the results can be used to calculate the total heat, 1; O(4,E) dE, defined 
by (A 9). In  terms of the Fourier integral (A 14) the value of vc is 

vC=-4Re[=] d4+ . 
k-0 

The evaluation of vc is simplified by expressing (A 25) in the alternative form 

Direct substitution of (A 20a) yields the result 

(A 27a) 

= 0.5327407050 ... . (A 27 b )  
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